已知偶函数y=loga|x-b|在区间(-∞,0)上递增,则a,b分别满足
A.a>1,b>0
B.a>1,b=0
C.a>1,b∈R
D.0<a<1,b=0
对258人提供帮助
分析:考查本题的形式,宜先用偶函数的性质求出b值,再由单调性确定参数a的值.
解答:∵y=loga|x-b|是偶函数
∴loga|x-b|=loga|-x-b|
∴|x-b|=|-x-b|
∴x2-2bx+b2=x2+2bx+b2
整理得4bx=0,由于x不恒为0,故b=0
由此函数变为y=loga|x|
当x∈(-∞,0)时,由于内层函数是一个减函数,
又偶函数y=loga|x-b|在区间(-∞,0)上递增
故外层函数是减函数,故可得0<a<1
综上得0<a<1,b=0
故选D.
点评:本题考点是奇偶性与单调性的综合,考查了根据函数的奇偶性与单调性特征求参数的值以及确定参数的范围,是函数性质综合考查的一个题,题后应总结函数性质的应用规律.