已知函数f(x)=2sin(2x+φ),若f(α)=2,则的值为
A.
B.
C.1
D.与ϕ和α有关
对258人提供帮助
分析:利用已知条件求得sin(2α+φ)=1,cos (2α+φ)=0,化简 等于2sin[2α+φ)+],
利用两角和的正弦公式展开运算.
解答:∵函数f(x)=2sin(2x+φ),若f(α)=2,∴2=2sin(2α+φ),∴sin(2α+φ)=1,
∴cos (2α+φ)=0,则=2sin[2(α+ )+φ]=2sin (2α+φ+)
=2[sin(2α+φ)cos+cos(2α+φ)sin]=2[1×+0×]=.
故选 A.
点评:本题考查同角三角函数的基本关系的应用,诱导公式、两角和的正弦公式的应用,利用已知条件求得
sin(2α+φ)=1,cos (2α+φ)=0 是解题的关键.