已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=(logπ3)f(logπ3),c=f,则a,b,c的大小关系是( )
A.a>b>c
B.c>b>a
C.c>a>b
D.a>c>b
对258人提供帮助
考点:函数奇偶性的性质;简单复合函数的导数;函数的单调性与导数的关系.
分析:由已知式子(x)+xf′(x),可以联想到:(uv)′=u′v+uv′,从而可设h(x)=xf(x),
有:h′(x)=f(x)+xf′(x)<0,所以利用h(x)的单调性问题很容易解决.
解:构造函数h(x)=xf(x),
由函数y=f(x)以及函数y=x是R上的奇函数可得h(x)=xf(x)是R上的偶函数,
又当x∈(-∞,0)时h′(x)=f(x)+xf′(x)<0,
所以函数h(x)在x∈(-∞,0)时的单调性为单调递减函数;
所以h(x)在x∈(0,+∞)时的单调性为单调递增函数.
又因为函数y=f(x)是定义在R上的奇函数,所以f(0)=0,从而h(0)=0
因为log3=-2,所以f(log3)=f(-2)=-f(2),
由0<logπ3<1<30.3<30.5<2
所以h(logπ3)<h(30.3)<h(2)=f(log3),即:b<a<c
故选B.